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1. Because it is a complex syndrome 
with a recent definition

Sepsis- why is it so complex?
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Clinical presentation of sepsis 
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Anti-infectious immune response: from homeostasis to deregulation of the inflammatory response

The Host Response
in Sepsis: pro and 
anti-inflammatory

responses
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Anti-infectious immune response: from homeostasis to deregulation of the inflammatory response

Sepsis definition
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Anti-infectious immune response: from homeostasis to deregulation of the inflammatory response



less commonly, patients also experience difficulty in 

breathing, muscle and/or joint pain, headache/dizziness, 

diarrhoea, nausea and the coughing up of blood6,10–15. 

Within 5–6 days of symptom onset, SARS- CoV-2 viral 

load reaches its peak — significantly earlier than that of 

the related SARS- CoV, where viral load peaks at about 

10 days after symptom onset16–19. Severe COVID-19 

cases progress to acute respiratory distress syndrome 

(ARDS), on average around 8–9 days after symptom 

onset11,20.
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2. Because its complex
pathophysiology involves many actors

Sepsis- why is it so complex?



Molecular players

N Engl J Med 2020;383:2255-73. DOI: 10.1056/NEJMra2026131

Clinical presentation of cytokine storm
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IL-6 blockade for cytokine storm    Review

to VE cells [14,28] . TF-expressing monocytes would 

then activate the coagulation cascade to produce 

thrombin. In fact, it was observed that injecting can-

cer patients with recombinant IL-6 increases throm-

bin–antithrombin III complexes and prothrombin 

activation fragment [29] . Moreover, the complex IL-6/

sIL-6R can activate endothelial cells to produce IL-6, 

IL-8 and MCP-1 as well as augment intercellular adhe-

sion molecule-1 expression, which leads to leukocyte 

recruitment [30] .

To protect the host against pathogens or to repair 

damaged lesions, blood cells and plasma components 

need to be supplied from inside vessels to the dam-

aged tissues. It has been demonstrated with the aid of a 

human umbilical endothelial cell model that stimula-

tion of endothelial cells with IL-6/sIL-6R induces phos-

phorylation and internalization of VE- cadherin [31] . 

VE-cadherin is the major structural protein that medi-

ates adhesion of adjacent cells by homophilic bind-

ing, while its disassembly leads to vascular leakage 

(Figure 1). IL-6 is also secreted from endothelial cells 

by stimulation of bacterial lipopolysaccharide, inflam-

matory cytokines such as IL-1 or TNF-α, and tissue 

hypoxia [30,32] . At the same time, inflammatory cyto-

kines including IL-6 increase production of VEGF in 

adipose tissue or other cells. VEGF phosphorylates 

and internalizes VE-cadherin and has a potent vas-

cular permeability effect on endothelial cells [33–36] . 

An increase in permeability generated by IL-6 itself 

or via induction of VEGF leads to interstitial edema 

and elevates tissue pressure, thereby resulting in tissue 

damage. Vascular permeability is also enhanced by the 

complement system. The activation of the complement 

cascade or thrombin converts C5 into C5a [37] , which 

Figure 1. Roles of IL-6 in acute inflammation. IL-6 rapidly induces a w ide spect rum of  proteins such as CRP, serum amyloid protein 

A, ant it rypsin, hepcidin, fi brinogen, thrombopoiet in and complement  C3 f rom liver. IL-6, direct ly or via induct ion of  VEGF, induces 

disassembly of  vascular endothelial-cadherin on endothelial cells, w hich leads to vascular hyperpermeabilit y, t hereby result ing in 

t issue damage. IL-6 upregulates C5a receptors on endothelial cells and increases t heir responsiveness to C5a, result ing in f ur ther 

enhancement  of  vascular permeabili t y. IL-6 also induces t issue factor expression on t he cell surface of  monocytes and t riggers a 

coagulat ion cascade, leading to act ivat ion of  thrombin and f ormat ion of  fi brin clot s. Thrombin induces IL-6 expression on endothelial 

cells, w hile IL-6 increases M CP-1 and IL-8 synthesis, w hich t riggers recruitment  of  monocytes and neut rophils to vascular endothelial 

cells. IL-6 also inhibit s cytotoxic act ivit y of  NK cells by reducing perforin and granzyme B. 

CRP: C-react ive protein; MCP-1: Monocyte chemoat t ract ant  protein-1; NK: Natural killer.
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Molecular players



Circulating cells

N Engl J Med 2020;383:2255-73. DOI: 10.1056/NEJMra2026131



Social network 
architecture of 

human immune 
cells unveiled by 

quantitative 
proteomics

Circulating cells

Nat Immunol. 2017 May;18(5):583-593. doi: 10.1038/ni.3693. Epub 2017 Mar 6



Interaction between
microbiota and 

immunity in health
and disease

Host-pathogen interactions and microbiology of sepsis

Cell Res . 2020 Jun;30(6):492-506.  doi: 10.1038/s41422-020-0332-7



Clinical Infectious Diseases 2018;66(9):1470–4 

Host-pathogen interactions and microbiology of sepsis



Modulation of metabolism

Sci Rep. 2017 Aug 29;7(1):9748. doi: 10.1038/s41598-017-09619-x. 



J. Clin. Med. 2021, 10(10), 2075; doi.org/10.3390/jcm10102075

Endocrinopathy

https://doi.org/10.3390/jcm10102075


Vascular endothelium and immunothrombosis

Nat Rev Immunol. 2013 Jan;13(1):34-45.  doi: 10.1038/nri3345. Epub 2012 Dec 7

The thrombotic
continuum-

uncontrolled
haemostasis and 

immunothrombosis
trigger disease
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Vascular endothelium and immunothrombosis

Dysfunction of 

the Vascular

Endothelium

and 

Mitochondria



Vascular endothelium and immunothrombosis

Nature Reviews Microbiology. June, 2014, Vol. 12 Issue 6, p426, 12 p.



ChawlaL. N Engl J Med 2014;371:58-66 

Epithelial injury



Nat Rev Nephrol. 2018 
Apr;14(4):217-230.

Epithelial injury
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2018), pro-resolving mediators such as resolvin D2 (Spite et al, 2009),

and the cell surface nucleotide-metabolizing enzyme CD39 (Csóka

et al, 2015). Acetylcholine produced by neurons and by a specific

subset of T-lymphocytes in response to norepinephrine is considered

a significant component in the neuronal control of inflammation

(Rosas-Ballina et al, 2011), though the role of the vagus nerve in

neuro-immune cross-talk is controversial (Martelli et al, 2014; Pavlov

et al, 2018). In a case report of successful use of experimental elec-

troacupuncture to protect against sepsis, dopamine was shown to be

the primary beneficial mediator (Torres-Rosas et al, 2014).

Circulat ing cells

Sepsis is associated with the reprogramming of circulating leukocytes

(Cavaillon et al, 2005). The term “ immunosuppression” is widely

used to qualify this phenomenon, which is inappropriate and mislead-

ing (Cavaillon & Giamarellos-Bourboulis, 2019). The ex vivo behavior

of leukocytes is greatly influenced by the compartment they are

derived from (Rasid & Cavaillon, 2018; Fig 3). Blood leukocytes

display reduced capacities to proliferate and to produce cytokines and

antibodies. Monocytes show reduced expression of HLA-DR mRNA,

while neutrophils show an increased expression of CD64 mRNA.

Notably, recruited monocytes within the lungs express 3.5-fold more

membrane HLA-DR compared to circulating monocytes (Skirecki

et al, 2016). Lymphocytes exhibit enhanced spontaneous apoptosis

while neutrophils’ anti-CD24-induced apoptosis is reduced (Parlato

et al, 2014). These alterations occur rapidly and in proportion to the

intensity of the insult, be it sepsis or other critical illnesses such as

trauma, hemorrhagic shock, major surgery, resuscitation after cardiac

arrest, and pancreatitis (Kim et al, 2010; Timmermans et al, 2016).

As expected, the altered capacity of circulating monocytes is associ-

ated with an enhanced expression of inhibitory signaling molecules

(Escoll et al, 2003; Adib-Conquy et al, 2006), histone modifications

(Bomsztyk et al, 2015), and specific miRNAs (Zhou et al, 2015;

Reithmair et al, 2017). Some miRNAs can attenuate sepsis-associated

alterations in myeloid cells, endothelial cells, and in the myocardium

(Zhou et al, 2017; Sisti et al, 2018). Circulating extracellular vesicles

containing miRNAs may be a novel mechanism of intercellular

communication during sepsis (Real et al, 2018). Whether these
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Figure 1. Summary of sepsis pathophysiology.

Upon direct activation of immuneand endothelial cellsby thepathogen-associated molecular patterns, there isa massivereleaseof inflammatory mediatorswhich affect each

body system. Inflammatory response activates the central nervoussystem, which actsby cholinergic anti-inflammatory impulsion and altered neuroendocrine response to

control the body response to infection and increase chances of survival. Cardiovascular dysfunction plays a central role in the pathogenesis of sepsis with the major role of

vasoplegia,hypovolemia,microcirculation perturbations,andcardiomyopathy.Alteredendothelium and inflammatorycellslead to thedevelopment of acuterespiratorydistress

syndrome(ARDS).Thedirect action of cytokinesand toxins, together with decreased blood flow, leadsto acutekidney injury (AKI). Inflammatory responseand ischemiaalter gut

permeability which enablesentry of bacteria and their metabolites into the tissues. Both bacterial products and inflammatory mediators affect bone marrow progenitor cells

enhancing theemergency myelopoiesis.Most often, the failureof multipleorgansispresent,which hassignificant consequencesasthere isa cross-talk between injured organs

which further perpetuates their dysfunction. For a more detailed perspective on organ failure in sepsis, we refer to a recent review (Lelubre & Vincent, 2018).
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Because our experimental
models are not appropriate

Sepsis- why is it so complex?



conventional stimuli (Smythies et al, 2005); peritoneal macro-

phages, alveolar macrophages, and blood monocytes are stimu-

lated differently by Staphylococcus aureus (Kapetanovic et al,

2011); spleen, lung, peritoneal macrophages, and microglial cells

express different patterns of transcriptomic and cell surface expres-

sion (Gautier et al, 2012); and alveolar macrophages fail to

develop endotoxin tolerance (Philippart et al, 2012). This late

phenomenon has also been observed with human alveolar macro-

phages (Smith et al, 1994). Studies in septic patients confirm how

different sites of infection affect the systemic response (Gogos

et al, 2010; Hoser et al, 2012). Thus, not surprisingly, specific

pathophysiological mechanisms differ between compartments, and

therapeutic intervention should be adapted accordingly with

patient cohorts more homogenous in terms of the infection site.
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Figure 5. Some keys differences in murine and human physiology that affect the response to sepsis (CRP—C-react i ve protein, MAC—membrane at tack

complex, SAP—serum amyloid protein).
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Because studies are 
difficult to design

Sepsis- why is it so complex?
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Enrollment of a heterogeneous
population of patients:
• intrinsic individual heterogeneity

reflecting genetic and epigenetic
diversity

• underlying comorbidities (obesity, 
medications)

• reactivation of asymptomatic viral 
infections

• Age
• Sex

Inappropriate selection of patients

Described endotypes of sepsis



Inappropriate selection of patients: lack of biomarkers

scRNA-seq identifies 
sepsis-specific

immune-cell states 
and gene signatures

Nat Med . 2020 Mar;26(3):333-340. doi: 10.1038/s41591-020-0752-4



Honore et al. Ann. Intensive Care (2019) 9:56 doi.org/10.1186/s13613-019-0530-y 

The time period for inclusion is difficult to determine



J Clin Invest. 2016;126(1):23–31. doi:10.1172/JCI82224. 

Mortality is not the only endpoint



Why should we remain
optimistic?

Sepsis- why is it so complex?



Improving the chances of therapeutic success

Examples of clinical trials that showed benefits in subgroups of septic patients. 

EMBO Molecular Medicine 12: e10128 | 2020 



Improving the chances of therapeutic success

N Engl J Med. 2021 Feb 25;384(8):693-704. doi: 
10.1056/NEJMoa2021436. Epub 2020 Jul 17. 



Improving the chances of therapeutic success

N Engl J Med . 2021 Sep 16;385(12):1147.  doi: 10.1056/NEJMc2108482
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Improving the chances of therapeutic success



ECOS in COVID-19 patients 7Blood Purif
DOI: 10.1159/000508125

by methods for cytokine adsorption (CytoSorb, Cytosor-
bents, NJ, USA; HA-380, Jafron, China; and oXiris, Bax-
ter, Deerfield, IL, USA), and if organ support is required, 
CRRT should be implemented in conjunction or after-
ward. Such treatment of endotoxin removal, cytokine re-
moval, and organ support along the course of the ICU 
stay is referred to as sequential extracorporeal therapy. 
Thus, ECOS represents the perfect combination of tech-
niques to provide blood purification in COVID-19 pa-

tients [1, 83] (Fig. 3). Specifically, for cytokine removal, 
different approaches have been suggested: (a) direct he-
moperfusion using a biocompatible sorbent; (b) plasma 
adsorption on a resin after plasma separation from whole 
blood; (c) CRRTs with hollow fiber filters with adsorptive 
properties; (d) high-dose CRRT with MCO or HCO 
membranes. These therapies find a rationale in the pre-
vention of organ damage induced by the CRS associated 
with severe COVID-19 infections [1, 79–83].
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Fig. 3. Pathways of kidney damage and proposed treatments in 
COVID-19 infections. Didactically 3 broad aspects are involved in 
COVID-19-associated AKI. Bidirectional involvement of each ele-
ment occurs, represented by Set Theory and the presence of inter-
sections. Treatment strategies also influence different elements si-
multaneously. a Neutro-macroporous resin adsorbing beads mag-
nified picture. b Bead on transmission electron microscopy.  
c Cytokine release syndrome and other triggers for cytokine gen-
eration. d MCO has more uniformity in pore size distribution and 
pore density; these characteristics enable the membrane to effec-
tively remove middle molecules in the range of most cytokines 

with tolerable albumin loss. e ECMO circuit. f Filter used in CRRT 
for fluid balance control, removal of nephrotoxins, correction of 
hyperkalemia, and metabolic acidosis. AKI, acute kidney injury; 
AV ECMO, arteriovenous ECMO; β2MG, β2 microglobulin; 
CRRT, continuous renal replacement therapy; CVVH, continuous 
veno-venous hemofiltration; ECCO2R, extracorporeal carbon di-
oxide removal; ECMO, extracorporeal membrane oxygenation; 
HCO, high cut-off; MCO, medium cut-off membrane; IAH, intra-
abdominal hypertension; IL, interleukin; kDa, kilodalton; LVAD, 
left ventricular assist device; TNF, tumor necrosis factor; VV 
ECMO, veno-venous ECMO.

Thank you for your attention

Blood Purif. 2021;50(1):17-27. 
doi: 10.1159/000508125. Epub 2020 May 26


